Irreducible locally nilpotent finitary skew linear groups
نویسندگان
چکیده
منابع مشابه
Locally Nilpotent Linear Groups
This article examines aspects of the theory of locally nilpotent linear groups. We also present a new classification result for locally nilpotent linear groups over an arbitrary field F. 1. Why Locally Nilpotent Linear Groups? Linear (matrix) groups are a commonly used concrete representation of groups. The first investigations of linear groups were undertaken in the second half of the 19th cen...
متن کاملSubgroups defining automorphisms in locally nilpotent groups
We investigate some situation in which automorphisms of a groupG are uniquely determined by their restrictions to a proper subgroup H . Much of the paper is devoted to studying under which additional hypotheses this property forces G to be nilpotent if H is. As an application we prove that certain countably infinite locally nilpotent groups have uncountably many (outer) automorphisms.
متن کاملLocally Nilpotent Groups and Hyperfinite Equivalence Relations
A long standing open problem in the theory of hyperfinite equivalence relations asks if the orbit equivalence relation generated by a Borel action of a countable amenable group is hyperfinite. In this paper we show that this question has a positive answer when the acting group is locally nilpotent. This extends previous results obtained by Gao–Jackson for abelian groups and by Jackson–Kechris–L...
متن کامل4-Engel Groups are Locally Nilpotent
Questions about nilpotency of groups satisfying Engel conditions have been considered since 1936, when Zorn proved that finite Engel groups are nilpotent. We prove that 4-Engel groups are locally nilpotent. Our proof makes substantial use of both hand and machine calculations.
متن کاملCertain Locally Nilpotent Varieties of Groups
Let c ≥ 0, d ≥ 2 be integers and N (d) c be the variety of groups in which every dgenerator subgroup is nilpotent of class at most c. N.D. Gupta posed this question that for what values of c and d it is true that N (d) c is locally nilpotent? We prove that if c ≤ 2 d + 2 − 3 then the variety N (d) c is locally nilpotent and we reduce the question of Gupta about the periodic groups in N (d) c to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1995
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500006209